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Abstract

Recent examples of Liouville-integrable geodesic flows on non-simply connected manifolds
have shown that the topological implications@¥ Liouville integrability are dramatically differ-
ent from the implications of real-analytic integrability. In particular a geodesic flow can be both
smoothly integrable and have positive topological entropy [A.V. Bolsinov, |.Ama&aov, Russ.
Math. Surveys 54 (4) (1999) 833-835]. The examples of Bolsinov afdai@ov, and of Butler [L.
Butler, CR Math. Rep. Acad. Sci. Can. 21 (4) (1999) 127-131] are constructed from left-invariant
metrics on Lie groups. In this paper, the degeneracy of the Poisson tensor on the dual algebra is
shown to be the source of the large number of commuting first integrals, and additional examples
of integrable geodesic flows are constructed:estep nilmanifolds. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

A Riemannian metric on a smooth manifalff’ induces a geodesic flogs onT*M", a
flow thatis Hamiltonian. Itis very rare for this flow to be Liouville integrable, and one would
like to know: what are the topological implications of Liouville integrability ?rilanov has
shown that ifM" is real analytic and all first integrals @f are real analytic, then there are
strong restrictions on the topology #f": its fundamental group must be almost Abelian
and its rational cohomology ring must contain a subring isomorphigt6I'; Q) where
d =dimHY(M; Q) [11,12].

For geodesic flows that are Liouville integrable with smoafii®{ first integrals, the
topological implications are much weaker. Paternain has proven a number of results in this
direction, and in each case the hypotheses are modeled on the behavior of real-analytically
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Liouville-integrable systems ([8-10], see also [5]). In [2,4], examples are presented of
real-analytic geodesic flows that are smoothly integrable and whose first integrals satisfy
none of the hypotheses of [5,8—-10]. The examples are obtained from compact quotients of
two-step nilpotent and two-step solvable Lie groups, respectively. One might wonder: are
there smoothly integrable geodesic flows on manifolds wdghep nilpotent (resp. solvable)
fundamental groups?

Inthis note itis shown that the geodesic flow of a left-invariant metric on a familystép
nilpotent Lie groups induces Liouville-integrable geodesic flows on compact quotients. This
paper also shows that the highly degenerate nature of the Poisson tensor on the Lie coalgebra
accounts for the Liouville integrability of the geodesic flows here and in [2,4].

1.1. A statement of the results

The following main theorems are proven.

Theorem 1.1(Integrability of the geodesic flow)Letn > 2andN e gl(n; R) be nilpotent:
N* = 0 for somek > 0. Define the multiplicatios onG = Gy =R x R” by

(x,y) x (x',y) 1= (x +x', y + expxN)y'),

whereexpis the usual matrix exponential function. LBt < G be a lattice and g be a
left-invariant metric on G; then the geodesic flowm{p, ¢) = %g_l(p, p) is Liouville
integrable onT*(D \ G) with n real-analytic first integrals and a singté* first integral

Remark 1.2. (i) The n first integrals are even algebraic, not simply real-analyfiig.

A lattice in a simply connected Lie group is a discrete, cocompact subg@up. Gy
possesses a lattice D iff there is a basis. . ., v, of R" and anx € R such that for eachji
exp(xN)v; is in theZ-span ofvy, . . ., v,. Thatis, without loss of generality, one may assume
thatexp(N) € SL(n; Z) relative to the standard basis &", and that the coordinates of
each element in the lattice D are integers

Paternain [8—10] has proven a number of results concerning the topology of manifolds
which possess geodesic flows with zero topological entropy. This family of examples fits
within that class:

Theorem 1.3.Let Gy, D, g, H be as above. Then the geodesic flow of g on the unit
cotangent bundlg*(D \ G) has zero topological entropy

Remark 1.4. (i) There is a published proof due to Mannifr that the topological entropy

of a left-invariant geodesic flow on a nilmanifold must vanish. This proof is mistaken: it
assumes that the exponential map of the metric is the same as the exponential map of the
group, which requires bi-invariance of the metric. This means that the Lie algebra admits a
positive-definite ad-invariant quadratic form so the Lie algebra must be reductive. The only
connected, simply connected Lie groups that are both nilpotent and reductiv®’are ),
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so Manning’s proof works only fd". It remains an open question if the topological entropy

of a left-invariant geodesic flow on a nilmanifold is always zéipBolsinov and Tananov

[2] exhibit Liouville-integrable geodesic flows on a three-dimensional solvmanifcid

with positive topological entropy. This paper provides an interpretation of their example:

it is a left-invariant metric on a Lie grou y with N semisimple an#/® = D \ G. The
integrability of the geodesic flow in their example arises because of the extreme degeneracy
of the Poisson tensor afiy, (see Lemma.7and Remark.5).

Remark 1.5. There is a special case whelR¥ has a basigs, .. ., ¢, such that
ej_1, n>i=>2,
Ne =1 °
“ { 0 i=1

In this case, there is a basl§, 11, ..., Y, of the Lie algebrgj of G such thafY;, ¥;] =0
forl<i,j <nand

=2 1)

Yi1, n>i
0, i=1
The lower central series @ is thenGy = G,and forn — 1>k > 1,Gy =[G, Gk—1] =

span{Y,—x, ..., Y1}. Hence, the Lie algebra of G, and so G, is n-step nilpotent with

dim Gy /Gr41 = 2if k = 0,and 1 otherwise

Corollary 1.6. Let N be the: x n matrix

0 1 0 ... 00
0O 0 1 ...00
N=|: " Co
0 0 0 ... 01
0 0 0 ... 00

and define the Lie grour = Gy as in Theorenl.l.Let D < G be a lattice in G.
Thenm1(D \ G) >~ D has word growth of degreg + %n(n + 1),and D \ G admits a
Liouville-integrable geodesic flaw

This corollary is a simple application of a theorem due to Bass [1] that the word growth
of a finitely generated nilpotent group with lower central serie® = Dg > D1 > --- >
D._1 > 1= D,, Dy11 = [D, Di] is a polynomial with degreé equal to the sum

‘ D
d=2krank( kl).
k=1 Dy

It is clear that forD of fixed rankr (any finitely-generated, torsion-free nilpotent group
can be embedded as a discrete, cocompact subgroup in a simply connected nilpotent Lie
group; the rank of the group is the dimension of the Lie group [6]) its nilpotency class
¢ < r — 1 and the word-growth function has degree 1 + %r(r —1). This upper bound
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on the degree of the word-growth function is achieved by the lattices in the above example.
It should now be apparent that, if the algebraic structure of the fundamental group is an
obstruction to the existence of Liouville-integrable geodesic flows, then this structure is not
captured by an invariant like the word-growth function.

The proof of the Liouville integrability of the geodesic flow is obtained from the following
lemma:

Lemma 1.7. Let G be defined fotv # 0 € gl(n; R). Then the Poisson brackeét -} on
G* satisfies
{Pas Pp;} = —(N'pp)i, 2
fori = 1,...,n and all other brackets are zero. Hence, the Poisson tensor is
n
0 d
P = (N'pg)i— | A —, 3)
<; P lapﬂi 0pa

and it generically has rank.

Here and hencefortlg; will be given a basi, Y1, ..., Y, such that K, ¥;] = NY; and
[Yi,Y;]=0foralll<i, j <n,andforallp € G*p, = p(X), pg, = p(¥;) andN" is the
transpose oN. The pairing of avectar € G andp € G* will be denoted by (v) and(p, v).

It should be remarked that the lemma does not use the nilpotengy s it is true for
all N, and therefore solvable (but not necessarily nilpotéhy)

Corollary 1.8. LetG y be defined foiv € sl(n; R), with N nilpotent. Then there are— 2
functionally independent first integra{€asimirg of the Poisson tensd?P on G*.

If D < G is a lattice, then these first integrals descendtdD \ G) = D\ G x G* as
Poisson commuting first integrals of any left-invariant Hamiltonién 7*G — R.

2. Proofs

Proof of Lemma 1.7. Let N € gl(n; R) and defineG = Gy := R x R", where
(x, ) x (x',y) 1= (x + x', expxN)y" + y).

LetG be the Lie algebra of left-invariant vector fields@nand writeG = A® B, whereB is
the Lie algebra of the normal, closed, Abelian subgroxR0 of G, andA a complementary
subspace which is identified witk. Let X, X' € A; Y, Y’ € B so that

[X+7Y, X +7Y']=XNY — X'NY 4)

is the Lie bracketg has a basi¥X, Y1, ..., Y, with X abasis ofA andYq, ..., ¥, a basis of
B. The Lie coalgebrg* is identified withA* @ B* so thatG* > p = p, + pg € A* ® B*.
Then the Poisson bracket can be written as

{Pa. Pg}(P) = —(p. [X. Yi]) = —(pp. NY;) = —(N'pp)i.

whereN’ is the transpose a¥. The bracket$pg,, pg;} = 0 for alli, j.
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The Poisson tens@? associated with-, -} is
P=—UAV, (5)

whereU = 9/dpy andV = Y7 1(N'pp)i(3/dpp,;). P has rank 2 for allpg ¢ kerN’,
which is an open dense set providE¥d# 0. O

Proof of Lemma 1.8. A Casimir f of P is a smooth function such thft f} = Pdf = 0.
If f = f(pa, pp) is a Casimir, then

0="Pdf =-U(NHV +V(NU,

so thatf must be a first integral of bottr andV. So f = f(pg) and f is a first integral
of the linear differential equation:

pp = N'pg. (6)

To find the first integrals o/ (6), letR"* split into N’-invariant, irreducible subspaces
E;fori =1,...,k, dimE; = n;. By the Jordan canonical-form theorem, there is a basis
B; of each subspace such thét| g, relative to this basis has the simple form:

00..00
10..00
Ng=|01..00
00 ..10

First integrals ofV| g, are first integrals of
YVo={y1=0,92=y1,.... 0 = Yn—1, (7)

where coordinates; are relative to the basis;. Let Y,, denote this vector field. A first
integral of Y, is a first integral ofY,, for all m > n. A complete set of first integrals

of a vector field is a maximal family of almost everywhere functionally independent first
integrals.

Lemma 2.1. For n > 3, define
ain=—azn=n—3%  aj,=CDTw+3-j) for 3<j<n-1
bjn= (=17 for 2<j<n-—1, byn = —ann = 3(=D".
Letby o = 3, a12 = —az» = 1.For n > 2 define the polynomials
n—1

Fr) = (D" 397+ Y (=D yivaoi, ®)
i=1
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and
n n
gn(Y) = Y @iny1iyonti-i + ) _bjny2yiyon-j ©)
i=1 j=2
andletfi(y) = y1. Thenfa, ..., fu, g2, ..., gn—1iS a complete family of first integrals for
Yo,—1and fi, ..., fu, &2, ..., g iS @ complete family of first integrals fab,, .
Proof. A calculation. O

In the general case whel®* = E1 @ --- @ E; is the direct sum ofV’-irreducible
subspaces, this computation gives- ) ., -1 first integrals of the vector fiel#f: p =
N’ p. However, the following point should be noted.

Lemma2.2. If y; ; are the coordinates of € R"* relative to the baseB; of the subspaces
E; andn; = dim E; > 2thenh; (y) = y1,1yi.2 — y1,2Yi.1 IS a first integral of V for > 2.

Let fi. (gi.») be the polynomial functioryf, (g») defined on the subspadg. The
collection of first integralsf; 4, gi.», h. therefore gives a complete ¢ 1 in number) set
of functionally independent first integrals for the vector fi#gldp = N’ p. This completes
the proof of Lemma 1.8.

The dimension of *G is 2n + 2, and so far first integrals for a left-invariant geodesic
flow on T*G have been produced. It remains to produce one additional, independent first
integral of the geodesic flow that Poisson commutes with the first integrals of the Poisson
structureP on G* exhibited above.

Lemma 2.3. Let(#, v) € R x R" >~ T1G and letX (u, v) be the right-invariant extension
of (u, v) to G. Then, the Hamiltonian of the cotangent liftdfu, v) to T*G = G x G* is
given by

Huw) (X, Y, Pa, PB) = Palt + e_XNpﬁ(v + uNy). (20)

Proof. The right-invariant extension af, v) is X (u, v)(x,y) = (u, uNy+ v) and the
left-invariant extension ofpy, pg) € T;°G is (pa, pg)(x, y) = (Pa, e—X”pﬂ). O

Lemma 2.4. Letv € R” be such that N # 0, N2v = 0. Let¢(x) = exp(—1/x2) for all
x € R and define the function

: e N pp()
(x, pg) = d(pg(Nv))sin2r | —————=|. 11
fx, pp) =9 (pp [ 5 (Nv) (11)
Then fis aC function on7T*G that is invariant under the action of any discrete subgroup

D CZx7Z"of G

Proof. Such av exists because & N is nilpotent. Becaus&/?v = 0, e Ny = v —
xNv and e NNv = N for all x € R. From (10), the Hamiltonian of the cotangent lifts of
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X (0, v) andX (0, Nv) are
Hy = pg(v) — xpg(Nv), Hny = pp(Nv).

That is,H, = pg(v) — XHny SO the ratioH, / Hn, mod 1 is invariant under the translation
x — x + 1, when the denominator is non-zero. The definitionfofakes care of this
singularity. O

Proof of Theorem (1.1)(conclusion). The Hamiltoniand,, and Hy, are Hamiltonians of
cotangentlifts of right-invariant vector fields, so they Poisson commute with all left-invariant
functions. Functional independence of the firstintegfals ., g;.», A iS obvious. To com-
plete the proof that all left-invariant metrics induce Liouville-integrable geodesic flows on
all compact quotients one notes thabifis a cocompact, discrete subgroupafthen there
exists anisomorphisgh: D' — D, whereD’ C Z x Z" and the isomorphisi of discrete,
torsion-free subgroups extends to an isomorphism of connected, simply connected nilpotent
Lie groupsg : G’ — G [6]. The isomorphisng then extends to a symplectomorphism of
T*G' — T*G, and¢, P’ = P, whereP’ (P) is the Poisson tensor gii* (G*). Conse-
quently, if H is a left-invariant function o *(D \ G) then¢* H is a left-invariant function
onT*(D'\ G"), which is Liouville integrable by Lemmas 2.1 and 2.4 and&is Liouville
integrable. Lettingd be the Hamiltonian of a left-invariant metric proves the theorém.

Remark 2.5 (cf. [2]). If N € sl(n; R), exp(N) € SL(n; Z) is semisimple with non-zero
real eigenvaluegiy, . . ., u, and corresponding eigenvectars, . . ., v,, then the Casimirs
of P are generated by the functios = I1}_, pg(v;), and fij = ¢ (F)(u; In|pp(v;)| —
wiln|pg))), whereg (x) = exp(—1/x2). An additional first integral of a left-invariant
metric arises fromh ; = ¢ (F) sin 2r(In|pg(v;)| — x). Any left-invariant Hamiltonian on
T*(D \ G) is therefore Liouville integrable.

For the metric Hamiltonia2H = p§ +1pg |2 a computation reveals that the tirdenap
of its flow along the invariant sdtp, = 1, pg = 0) is the mappingD(x, y),1,0) —
(D(x, exp(—N)y), 1, 0), which is an Anosov mapping of the torus= constantp, =
1, pg = Oto itself. Hence, the topological entropy is positive

2.1. Topological entropy

Proof of Theorem 1.3. The theorem will be proven by induction on the dimensiofror
n = 1, the theorem is clearly true because the malrix 0 and the grou y = T2 with
the Euclidean metric on it.

Assume therefore that the topological entropy of all geodesic flows of the&ypeD,
g, H) vanishes fordimdom¥ =1, ...,n — 1. Let dimdomVN = n with N satisfying the
hypotheses of the theorem, af@y, D, g, H) be a 4-tuple of group, lattice, left-invariant
metric and Hamiltonian. The aim is to show that the topological entropy of the geodesic
flow of g onS*(D \ G) = H—l(%) vanishes, which is most easily done by showing that it
vanishes o *(D \ G). LetZy, ..., Z; be a basis of the center gfand assume that each
vector field generates® action onT*(D \ G).
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Note that the linear first integrals of the Poisson tensor (Lemma 2.1) are just linear
combinations of the first integrals(Z1), ..., p(Z;). Without loss of generality, it may
be supposed that the linear first integrals are exaeth,), . .., p(Zx), and that the first
integral f in (11) is chosen so thav = Z; for anyi = 1,..., k. It follows, therefore,
that the first integrals of the geodesic flow are functionally independent of the set
{(Dx, p) € T*(D \ G) : l‘[{?:lp(z,») # 0}. The geodesic flow o is conjugate to a
translation-type flow and si(¢;|R) = 0. It remains to examine the flow akf.

The setR¢ = U*_;S;, whereS; := {(Dx,p) € T*(D \ G) : p(Z;) = 0}. Each
subset (indeed, submanifold) is invariant under the geodesic flow. It will be shown that
h(g|S;) = 0foralli.

LetS = S; andS* denote the group whose infinitesimal generataf 60D\ G) is X .z,
Then,S/St is the symplectic reduction of the zero momentum level set of the momentum
mapp(Z;). As remarked above, is a submanifold because the momentum map is linear:
its differential does not vanish afi Because the geodesic flow is invariant under fis
action, the flowyp, and the HamiltoniarHH descend tc.

Claim. LetD' := D/DN S, G’ := G/S*. Thens = T*(D'\ G'), the reduced symplectic
form coincides with the canonical symplectic form on the cotangent bundlé: afs =
wcan, and the reduced HamiltoniaH coincides with the Hamiltonian of a left-invariant
metric onG’.

Check. The submanifold = D\ G xker Z;, whereZ; is identified as a linear functional on
G*. By virtue of the fact that the action generatedfy}commutes with that oD, its action
onG* is trivial so the second isomorphism theorem impligsst = (S D\ G) x kerZ; ~
D'\ G’ x kerZ; and kerZ; is naturally identified ag’*.

The remaining two claims are clear.

From this claim, it follows that the geodesic flow nwhen quotiented by the action
of the compact symmetry grouft is again a geodesic flow of a left-invariant metric on a
manifold in the clas$G’y:, D', g’, H'), whereN’ is the nilpotent linear transformation on
G’ = G/Z; that is induced by the linear transformatidh This manifold has dimension
n — 1 and so the induction hypothesis applie&y’;|T * (D’ \ G’)) = 0, wherey’, is the
geodesic flow of’.

Bowen’s theorem [3] implies that the topological entropyp¥anishes ots: h(¢;|S) =
0. The supremum ule for topological entrofpyty; ) = sup{i (/| X;)|UX; = X, X; iS ¢;—
invariang, then implies that the topological entropy@fvanishes:

h(@:T*(D\ G)) = 0.
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