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Abstract

Recent examples of Liouville-integrable geodesic flows on non-simply connected manifolds
have shown that the topological implications ofC∞ Liouville integrability are dramatically differ-
ent from the implications of real-analytic integrability. In particular a geodesic flow can be both
smoothly integrable and have positive topological entropy [A.V. Bolsinov, I.A. Taı̆manov, Russ.
Math. Surveys 54 (4) (1999) 833–835]. The examples of Bolsinov and Taı̆manov, and of Butler [L.
Butler, CR Math. Rep. Acad. Sci. Can. 21 (4) (1999) 127–131] are constructed from left-invariant
metrics on Lie groups. In this paper, the degeneracy of the Poisson tensor on the dual algebra is
shown to be the source of the large number of commuting first integrals, and additional examples
of integrable geodesic flows are constructed onn-step nilmanifolds. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

A Riemannian metric on a smooth manifoldMn induces a geodesic flowφt onT ∗Mn, a
flow that is Hamiltonian. It is very rare for this flow to be Liouville integrable, and one would
like to know: what are the topological implications of Liouville integrability? Taı̆manov has
shown that ifMn is real analytic and all first integrals ofφt are real analytic, then there are
strong restrictions on the topology ofMn: its fundamental group must be almost Abelian
and its rational cohomology ring must contain a subring isomorphic toH ∗(Td;Q) where
d = dimH 1(M;Q) [11,12].

For geodesic flows that are Liouville integrable with smooth (C∞) first integrals, the
topological implications are much weaker. Paternain has proven a number of results in this
direction, and in each case the hypotheses are modeled on the behavior of real-analytically
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Liouville-integrable systems ([8–10], see also [5]). In [2,4], examples are presented of
real-analytic geodesic flows that are smoothly integrable and whose first integrals satisfy
none of the hypotheses of [5,8–10]. The examples are obtained from compact quotients of
two-step nilpotent and two-step solvable Lie groups, respectively. One might wonder: are
there smoothly integrable geodesic flows on manifolds withn-step nilpotent (resp. solvable)
fundamental groups?

In this note it is shown that the geodesic flow of a left-invariant metric on a family ofn-step
nilpotent Lie groups induces Liouville-integrable geodesic flows on compact quotients. This
paper also shows that the highly degenerate nature of the Poisson tensor on the Lie coalgebra
accounts for the Liouville integrability of the geodesic flows here and in [2,4].

1.1. A statement of the results

The following main theorems are proven.

Theorem 1.1(Integrability of the geodesic flow).Letn ≥ 2andN ∈ gl(n;R) be nilpotent:
Nk = 0 for somek ≥ 0. Define the multiplication∗ onG = GN = R× Rn by

(x, y) ∗ (x′, y′) := (x + x′, y + exp(xN)y′),

whereexp is the usual matrix exponential function. LetD ≤ G be a lattice and g be a
left-invariant metric on G; then the geodesic flow ofH(p, q) = 1

2g−1(p, p) is Liouville
integrable onT ∗(D \ G) with n real-analytic first integrals and a singleC∞ first integral.

Remark 1.2. (i) The n first integrals are even algebraic, not simply real-analytic.(ii)
A lattice in a simply connected Lie group is a discrete, cocompact subgroup.G = GN

possesses a lattice D iff there is a basisv1, . . . , vn ofRn and anx ∈ R such that for each i,
exp(xN)vi is in theZ-span ofv1, . . . , vn. That is, without loss of generality, one may assume
that exp(N) ∈ SL(n;Z) relative to the standard basis ofRn, and that the coordinates of
each element in the lattice D are integers.

Paternain [8–10] has proven a number of results concerning the topology of manifolds
which possess geodesic flows with zero topological entropy. This family of examples fits
within that class:

Theorem 1.3. Let GN, D, g, H be as above. Then the geodesic flow of g on the unit
cotangent bundleS∗(D \ G) has zero topological entropy.

Remark 1.4. (i) There is a published proof due to Manning[7] that the topological entropy
of a left-invariant geodesic flow on a nilmanifold must vanish. This proof is mistaken: it
assumes that the exponential map of the metric is the same as the exponential map of the
group, which requires bi-invariance of the metric. This means that the Lie algebra admits a
positive-definite ad-invariant quadratic form so the Lie algebra must be reductive. The only
connected, simply connected Lie groups that are both nilpotent and reductive are(Rn, +),
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so Manning’s proof works only forTn. It remains an open question if the topological entropy
of a left-invariant geodesic flow on a nilmanifold is always zero.(ii) Bolsinov and Tăımanov
[2] exhibit Liouville-integrable geodesic flows on a three-dimensional solvmanifoldM3

with positive topological entropy. This paper provides an interpretation of their example:
it is a left-invariant metric on a Lie groupGN with N semisimple andM3 = D \ G. The
integrability of the geodesic flow in their example arises because of the extreme degeneracy
of the Poisson tensor onG∗

N (see Lemma1.7and Remark2.5).

Remark 1.5. There is a special case whereRn has a basise1, . . . , en such that

Nei =
{

ei−1, n ≥ i ≥ 2,

0, i = 1.

In this case, there is a basisX, Y1, . . . , Yn of the Lie algebraG of G such that[Yi, Yj ] = 0
for 1 ≤ i, j ≤ n and

[X, Yi ] =
{

Yi−1, n ≥ i ≥ 2,

0, i = 1.
(1)

The lower central series ofG is thenG0 = G, and forn − 1 ≥ k ≥ 1, Gk = [G,Gk−1] =
span{Yn−k, . . . , Y1}. Hence, the Lie algebra of G, and so G, is n-step nilpotent with
dimGk/Gk+1 = 2 if k = 0, and1 otherwise.

Corollary 1.6. Let N be then × n matrix

N =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . .
. . .

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0




and define the Lie groupG = GN as in Theorem1.1. Let D ≤ G be a lattice in G.
Thenπ1(D \ G) ' D has word growth of degree1 + 1

2n(n + 1), and D \ G admits a
Liouville-integrable geodesic flow.

This corollary is a simple application of a theorem due to Bass [1] that the word growth
of a finitely generated nilpotent groupD with lower central seriesD = D0 ≥ D1 ≥ · · · ≥
Dc−1 ≥ 1 = Dc, Dk+1 = [D, Dk] is a polynomial with degreed equal to the sum

d =
c∑

k=1

k rank

(
Dk−1

Dk

)
.

It is clear that forD of fixed rankr (any finitely-generated, torsion-free nilpotent group
can be embedded as a discrete, cocompact subgroup in a simply connected nilpotent Lie
group; the rank of the group is the dimension of the Lie group [6]) its nilpotency class
c ≤ r − 1 and the word-growth function has degreed ≤ 1 + 1

2r(r − 1). This upper bound
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on the degree of the word-growth function is achieved by the lattices in the above example.
It should now be apparent that, if the algebraic structure of the fundamental group is an
obstruction to the existence of Liouville-integrable geodesic flows, then this structure is not
captured by an invariant like the word-growth function.

The proof of the Liouville integrability of the geodesic flow is obtained from the following
lemma:

Lemma 1.7. Let GN be defined forN 6= 0 ∈ gl(n;R). Then the Poisson bracket{·, ·} on
G∗ satisfies

{pα, pβi
} = −(N ′pβ)i, (2)

for i = 1, . . . , n and all other brackets are zero. Hence, the Poisson tensor is

P =
(

n∑
i=1

(N ′pβ)i
∂

∂pβi

)
∧ ∂

∂pα

, (3)

and it generically has rank2.

Here and henceforth,G will be given a basisX, Y1, . . . , Yn such that [X, Yi ] = NYi and
[Yi, Yj ] = 0 for all 1 ≤ i, j ≤ n, and for allp ∈ G∗pα = p(X), pβi

= p(Yi) andN ′ is the
transpose ofN . The pairing of a vectorv ∈ G andp ∈ G∗ will be denoted byp(v) and〈p, v〉.

It should be remarked that the lemma does not use the nilpotency ofN , so it is true for
all N , and therefore solvable (but not necessarily nilpotent)GN .

Corollary 1.8. LetGN be defined forN ∈ sl(n;R), with N nilpotent. Then there aren − 2
functionally independent first integrals(Casimirs) of the Poisson tensorP onG∗.

If D ≤ G is a lattice, then these first integrals descend toT ∗(D \ G) = D \ G × G∗ as
Poisson commuting first integrals of any left-invariant HamiltonianH : T ∗G → R.

2. Proofs

Proof of Lemma 1.7. Let N ∈ gl(n;R) and defineG = GN := R× Rn, where

(x, y) ∗ (x′, y′) := (x + x′, exp(xN)y′ + y).

LetG be the Lie algebra of left-invariant vector fields onG, and writeG = A⊕B, whereB is
the Lie algebra of the normal, closed, Abelian subgroup 0×Rn of G, andA a complementary
subspace which is identified withR. Let X, X′ ∈ A; Y, Y ′ ∈ B so that

[X + Y, X′ + Y ′] = XNY′ − X′NY (4)

is the Lie bracket.G has a basisX, Y1, . . . , Yn with X a basis ofA andY1, . . . , Yn a basis of
B. The Lie coalgebraG∗ is identified withA∗ ⊕B∗ so thatG∗ 3 p = pα +pβ ∈ A∗ ⊕B∗.
Then the Poisson bracket can be written as

{pα, pβi
}(p) = −〈p, [X, Yi ]〉 = −〈pβ, NYi〉 = −(N ′pβ)i,

whereN ′ is the transpose ofN . The brackets{pβi
, pβj

} = 0 for all i, j .
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The Poisson tensorP associated with{·, ·} is

P = −U ∧ V, (5)

whereU = ∂/∂pα andV = ∑n
i=1(N

′pβ)i(∂/∂pβi
). P has rank 2 for allpβ /∈ kerN ′,

which is an open dense set providedN 6= 0. �

Proof of Lemma 1.8. A Casimirf ofP is a smooth function such that{·, f } = P df ≡ 0.
If f = f (pα, pβ) is a Casimir, then

0 = P df = −U(f )V + V (f )U,

so thatf must be a first integral of bothU andV . Sof = f (pβ) andf is a first integral
of the linear differential equation:

ṗβ = N ′pβ. (6)

To find the first integrals ofV (6), letRn∗ split into N ′-invariant, irreducible subspaces
Ei for i = 1, . . . , k, dimEi = ni . By the Jordan canonical-form theorem, there is a basis
Bi of each subspace such thatN ′|Ei

relative to this basis has the simple form:

N ′|Bi
=




0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


 .

First integrals ofV |Ei
are first integrals of

Yn = {ẏ1 = 0, ẏ2 = y1, . . . , ẏn = yn−1, (7)

where coordinatesyi are relative to the basisBi . Let Yn denote this vector field. A first
integral of Yn is a first integral ofYm for all m ≥ n. A complete set of first integrals
of a vector field is a maximal family of almost everywhere functionally independent first
integrals.

Lemma 2.1. For n ≥ 3, define

a1,n = −a2,n = n − 1
2, aj,n = (−1)j+1(n + 1

2 − j) for 3 ≤ j ≤ n − 1,

bj,n = (−1)j for 2 ≤ j ≤ n − 1, bn,n = −an,n = 1
2(−1)n.

Letb2,2 = 1
3, a1,2 = −a2,2 = 1. For n ≥ 2 define the polynomials

fn(y) = (−1)n 1
2y2

n +
n−1∑
i=1

(−1)iyiy2n−i , (8)
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and

gn(y) =
n∑

i=1

ai,ny1yiy2n+1−i +
n∑

j=2

bj,ny2yjy2n−j (9)

and letf1(y) = y1. Thenf1, . . . , fn, g2, . . . , gn−1 is a complete family of first integrals for
Y2n−1 andf1, . . . , fn, g2, . . . , gn is a complete family of first integrals forY2n.

Proof. A calculation. �

In the general case whereRn∗ = E1 ⊕ · · · ⊕ Ek is the direct sum ofN ′-irreducible
subspaces, this computation givesn −∑

i:ni≥21 first integrals of the vector fieldV : ṗ =
N ′p. However, the following point should be noted.

Lemma 2.2. If yi,j are the coordinates ofy ∈ Rn∗ relative to the basesBi of the subspaces
Ei andni = dimEi ≥ 2 thenhi(y) = y1,1yi,2 − y1,2yi,1 is a first integral of V fori ≥ 2.

Let fi,a (gi,b) be the polynomial functionfa (gb) defined on the subspaceEi . The
collection of first integralsfi,a, gi,b, hc therefore gives a complete (n − 1 in number) set
of functionally independent first integrals for the vector fieldV : ṗ = N ′p. This completes
the proof of Lemma 1.8.

The dimension ofT ∗G is 2n + 2, and so farn first integrals for a left-invariant geodesic
flow on T ∗G have been produced. It remains to produce one additional, independent first
integral of the geodesic flow that Poisson commutes with the first integrals of the Poisson
structureP onG∗ exhibited above.

Lemma 2.3. Let (u, v) ∈ R×Rn ' T1G and letX (u, v) be the right-invariant extension
of (u, v) to G. Then, the Hamiltonian of the cotangent lift ofX (u, v) to T ∗G = G × G∗ is
given by

H(u,v)(x, y, pα, pβ) = pαu + e−xN′
pβ(v + uNy). (10)

Proof. The right-invariant extension of(u, v) is X (u, v)(x, y) = (u, uNy+ v) and the
left-invariant extension of(pα, pβ) ∈ T ∗

1 G is (pα, pβ)(x, y) = (pα, e−xN′
pβ). �

Lemma 2.4. Let v ∈ Rn be such that Nv 6= 0, N2v = 0. Let φ(x) = exp(−1/x2) for all
x ∈ R and define the function

f (x, pβ) := φ(pβ(Nv)) sin 2π

[
e−xN′

pβ(v)

pβ(Nv)

]
. (11)

Then f is aC∞ function onT ∗G that is invariant under the action of any discrete subgroup
D ⊂ Z× Zn of G.

Proof. Such av exists because 06= N is nilpotent. BecauseN2v = 0, e−xNv = v −
xNv and e−xNNv = Nv for all x ∈ R. From (10), the Hamiltonian of the cotangent lifts of
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X (0, v) andX (0, Nv) are

Hv = pβ(v) − xpβ(Nv), HNv = pβ(Nv).

That is,Hv = pβ(v) − xHNv so the ratioHv/HNv mod 1 is invariant under the translation
x → x + 1, when the denominator is non-zero. The definition off takes care of this
singularity. �

Proof of Theorem (1.1)(conclusion). The HamiltoniansHv andHNv are Hamiltonians of
cotangent lifts of right-invariant vector fields, so they Poisson commute with all left-invariant
functions. Functional independence of the first integralsf, fi,a, gj,b, hc is obvious. To com-
plete the proof that all left-invariant metrics induce Liouville-integrable geodesic flows on
all compact quotients one notes that ifD is a cocompact, discrete subgroup ofG, then there
exists an isomorphismφ : D′ → D, whereD′ ⊂ Z×Zn and the isomorphismφ of discrete,
torsion-free subgroups extends to an isomorphism of connected, simply connected nilpotent
Lie groupsφ : G′ → G [6]. The isomorphismφ then extends to a symplectomorphism of
T ∗G′ → T ∗G, andφ∗P ′ = P, whereP ′ (P) is the Poisson tensor onG′∗ (G∗). Conse-
quently, ifH is a left-invariant function onT ∗(D \G) thenφ∗H is a left-invariant function
onT ∗(D′ \G′), which is Liouville integrable by Lemmas 2.1 and 2.4 and soH is Liouville
integrable. LettingH be the Hamiltonian of a left-invariant metric proves the theorem.�

Remark 2.5 (cf. [2]). If N ∈ sl(n;R), exp(N) ∈ SL(n;Z) is semisimple with non-zero
real eigenvaluesµ1, . . . , µn and corresponding eigenvectorsv1, . . . , vn, then the Casimirs
of P are generated by the functionsF = 5n

i=1pβ(vi), andfij = φ(F )(µi ln |pβ(vj )| −
µj ln |pβ(vi)|), whereφ(x) = exp(−1/x2). An additional first integral of a left-invariant
metric arises fromhj = φ(F ) sin 2π(ln |pβ(vj )| − x). Any left-invariant Hamiltonian on
T ∗(D \ G) is therefore Liouville integrable.

For the metric Hamiltonian2H = p2
α +|pβ |2 a computation reveals that the time-1 map

of its flow along the invariant set(pα = 1, pβ = 0) is the mapping(D(x, y), 1, 0) →
(D(x, exp(−N)y), 1, 0), which is an Anosov mapping of the torusx ≡ constant, pα =
1, pβ = 0 to itself. Hence, the topological entropy is positive.

2.1. Topological entropy

Proof of Theorem 1.3. The theorem will be proven by induction on the dimensionn. For
n = 1, the theorem is clearly true because the matrixN = 0 and the groupGN = T2 with
the Euclidean metric on it.

Assume therefore that the topological entropy of all geodesic flows of the type(GN, D,

g, H) vanishes for dim domN = 1, . . . , n − 1. Let dim domN = n with N satisfying the
hypotheses of the theorem, and(GN, D, g, H) be a 4-tuple of group, lattice, left-invariant
metric and Hamiltonian. The aim is to show that the topological entropy of the geodesic
flow of g onS∗(D \ G) = H−1(1

2) vanishes, which is most easily done by showing that it
vanishes onT ∗(D \ G). Let Z1, . . . , Zk be a basis of the center ofG and assume that each
vector field generates aT1 action onT ∗(D \ G).
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Note that the linear first integrals of the Poisson tensor (Lemma 2.1) are just linear
combinations of the first integralsp(Z1), . . . , p(Zk). Without loss of generality, it may
be supposed that the linear first integrals are exactlyp(Z1), . . . , p(Zk), and that the first
integralf in (11) is chosen so thatNv = Zi for any i = 1, . . . , k. It follows, therefore,
that the first integrals of the geodesic flow are functionally independent of the setR :=
{(Dx, p) ∈ T ∗(D \ G) : 5k

i=1p(Zi) 6= 0}. The geodesic flow onR is conjugate to a
translation-type flow and soh(ϕt |R) = 0. It remains to examine the flow onRc.

The setRc = ∪k
i=1Si , whereSi := {(Dx, p) ∈ T ∗(D \ G) : p(Zi) = 0}. Each

subset (indeed, submanifold)Si is invariant under the geodesic flow. It will be shown that
h(ϕt |Si) = 0 for all i.

LetS = Si andS1 denote the group whose infinitesimal generator onT ∗(D\G) isXp(Zi).
Then,S/S1 is the symplectic reduction of the zero momentum level set of the momentum
mapp(Zi). As remarked above,S is a submanifold because the momentum map is linear:
its differential does not vanish onS. Because the geodesic flow is invariant under thisS1

action, the flowϕt and the HamiltonianH descend toS.

Claim. LetD′ := D/D ∩S1, G′ := G/S1. ThenS = T ∗(D′ \G′), the reduced symplectic
form coincides with the canonical symplectic form on the cotangent bundle ofG′: ωS =
ωcan; and the reduced HamiltonianHS coincides with the Hamiltonian of a left-invariant
metric onG′.

Check. The submanifoldS = D\G×kerZi , whereZi is identified as a linear functional on
G∗. By virtue of the fact that the action generated byZi commutes with that ofD, its action
onG∗ is trivial so the second isomorphism theorem implies,S/S1 = (S1 D \G)×kerZi '
D′ \ G′ × kerZi and kerZi is naturally identified asG′∗.

The remaining two claims are clear.

From this claim, it follows that the geodesic flow onS, when quotiented by the action
of the compact symmetry groupS1 is again a geodesic flow of a left-invariant metric on a
manifold in the class(G′

N ′ , D′, g′, H ′), whereN ′ is the nilpotent linear transformation on
G′ = G/Zi that is induced by the linear transformationN . This manifold has dimension
n − 1 and so the induction hypothesis applies:h(ϕ′

t |T ∗ (D′ \ G′)) = 0, whereϕ′
t is the

geodesic flow ofg′.
Bowen’s theorem [3] implies that the topological entropy ofϕt vanishes onS: h(ϕt |S) =

0. The supremum rule for topological entropy,h(ϕt ) = sup{h(ϕt |Xi)|∪Xi = X, Xi is ϕt−
invariant}, then implies that the topological entropy ofϕt vanishes:

h(ϕt |T ∗(D \ G)) = 0.
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